If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+6x-1800=0
a = 4; b = 6; c = -1800;
Δ = b2-4ac
Δ = 62-4·4·(-1800)
Δ = 28836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28836}=\sqrt{324*89}=\sqrt{324}*\sqrt{89}=18\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-18\sqrt{89}}{2*4}=\frac{-6-18\sqrt{89}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+18\sqrt{89}}{2*4}=\frac{-6+18\sqrt{89}}{8} $
| 2x+3=5×+6 | | 3x+20+2x+18+4x+5x=360° | | 5m+10=25m= | | 18x+10=6x-62 | | 8b=4b-4 | | 12-3p=8 | | 9x-18=8x-9 | | -4x-22=26 | | 4b=52b= | | -9a+139=-a+59 | | 30+45y=78 | | 10n+2=7n+11 | | 2a+7/5=7 | | -29=11x | | 7w+1=`1 | | (10x-180)+(8x+10)=180 | | 6*(y+3)=18-(2-4y) | | 11x+16=2x+151 | | x=7/12+50 | | 18x=350 | | f2=25 | | 4x~8=3x~8 | | 12e-11=61 | | 10x+7x=180-10-17 | | 6-7d=-71 | | 4z+13=15 | | 8d-5=59 | | 3z2=27 | | 9k-29=k+27 | | 5q+3=63 | | ?x7x5=105 | | 8(h-4)=160 |